

MF610 Single-Phase BLDC Motor Controller Data Sheet

Version 0.05 - Aug. 17, 2023

Copyright ${\scriptsize ©}$ 2023 by PADAUK Technology Co., Ltd., all rights reserved.

6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C. TEL: 886-3-572-8688 🙀 www.padauk.com.tw

IMPORTANT NOTICE

PADAUK Technology reserves the right to make changes to its products or to terminate production of its products at any time without notice. Customers are strongly recommended to contact PADAUK Technology for the latest information and verify whether the information is correct and complete before placing orders.

PADAUK Technology products are not warranted to be suitable for use in life-support applications or other critical applications. PADAUK Technology assumes no liability for such applications. Critical applications include, but are not limited to, those that may involve potential risks of death, personal injury, fire or severe property damage.

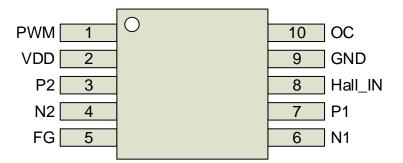
Any programming software provided by PADAUK Technology to customers is of a service and reference nature and does not have any responsibility for software vulnerabilities. PADAUK Technology assumes no responsibility for any issue caused by a customer's product design. Customers should design and verify their products within the ranges guaranteed by PADAUK Technology. In order to minimize the risks in customers' products, customers should design a product with adequate operating safeguards.

Table of Contents

1.	. Key Features	5
2.	Pin Diagram and Pin Description	6
3.	Device Characteristics	7
	3.1. Absolute Maximum Ratings3.2. DC/AC Characteristics	
4.	. Reference Application Circuit	10
5.	. Package Information: MSOP10 (118mil)	11

Revision History:

Revision	Date	Description
0.04	2021/01/15	Add pin description
		1. Updated "IMPORTANT NOTICE"
0.05	2023/08/17	2. Updated DC/AC Characteristics: f_{SYS} , I_{OP} , V_{BRD} , V_{BG} , f_{IHRC} , V_{ADC} and ADclk
		3. Amend chapter 4 (three-phase diagram)


1. Key Features

- Single-phase BLDC motor with hall IC interface
- PWM or voltage control input
- FG/RD/ALM/RALN/RXX/RRXX output
- Close loop or/and open loop control
- Current limit and over-current protection
- Soft-start, lock-protect and auto-restart
- System protection
 - Low-voltage detection with reset
 - Illegal opcode detection with reset
- MTP Programming
 - Support 6-wire factory programming mode
 - Support 4-wire in-system programming mode
- DC Fan Applications
 - Operating voltage range: 3.5V~6V
 - Operating temperature range: -40°C~105°C
- Package Information
 - MF610-M10: MSOP10 (118mil)

MF610 is a single phase BLDC motor controller based on 8-bit 8-FPPA MCU which can be programmed by 6-wire factory mode or 4-wire ISP mode. MF610 receives motor position signal from Hall IC and can control the H-bridge flexibly to make the best efficiency of the motor. Through the PADAUK patented AP development system, it can easily set any speed curve, output signal and protection parameters etc., and it can observe the motor response online immediately. Using the MF610's development system, it's much easier and adjustable for application.

2. Pin Diagram and Pin Description

MF610: M10 (MSOP10-118mil)

Pin Name	I/O	Description					
PWM/ PB7	Input	PWM signal input					
VDD	-	Power pin. Needs a 1uF and a 0.1uF capacitor in parallel.					
P2/ PA6	Output	Output signal to control the high side of motor driver					
N2/ PA7	Output Output signal to control the low side of motor driver						
FG/ PA0	Output	Rotation speed signal output					
N1/ PA3	Output	Output signal to control the low side of motor driver					
P1/ PA4 Output		Output signal to control the high side of motor driver					
Hall_IN/ PA5 Input		Digital hall signal input					
GND	-	Ground					
OC/ PB0	Input	Analog input to sense motor current					

3. Device Characteristics

3.1. Absolute Maximum Ratings

Name	Min	Тур.	Мах	Unit	Notes
Supply Voltage (VDD)	3.5		6	V	Exceed the maximum rating may cause permanent damaged!!
Input Voltage	-0.3		V _{DD} + 0.2	V	
Operating Temperature	-40		105	°C	
Storage Temperature	-50		125	°C	
Junction Temperature		150		°C	

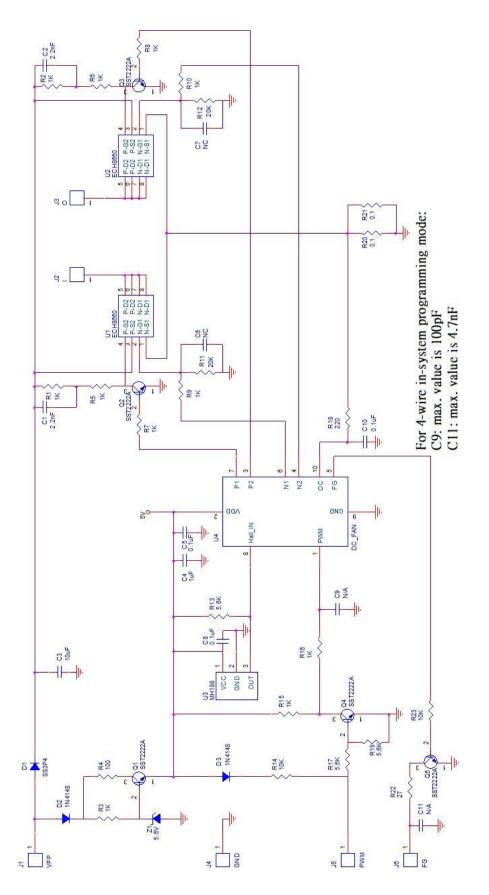
3.2. DC/AC Characteristics

Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25℃)
V _{DD}	Operating Voltage	3.5	5.0	6	V	-40 °C <ta<85 td="" °c<=""></ta<85>
VDD		4.75	5.0	6	•	-40 °C <ta<105 td="" °c<=""></ta<105>
VFSV	Forbidden V _{DD} startup voltage range	0.7		1.6	V	
VPORV	V _{DD} power down release voltage			0.7	V	
T _{POR}	V_{DD} power on time (V_{\text{DD}} from 0V to 5V)			50	ms	
T _{FSV}	V _{DD} power on time during V _{FSV} range			10	ms	
fsys	System clock IHRC/2	0		8M	Hz	V _{DD} = 3.3V
I _{OP}	Operating Current		3.5		mA	f _{SYS} =8MIPS@5.0V
1	Power Down Current		3		uA	V _{DD} =5.0V
I _{PD}	(by <i>stopsys</i> command)		1		uA	V _{DD} =3.3V
IPS	Power Save Current (by stopexe command)		0.4		mA	VDD=5.0V; Bandgap, LVD, IHRC, ILRC, Timer16 modules are ON.
VIL	Input low voltage for IO lines	0		0.2V _{DD}	V	
Vін	Input high voltage for IO lines	0.8 V _{DD}		Vdd	V	
I _{OL}	IO lines sink current	11	14	17	mA	V_{DD} =5.0V, V_{OL} =0.5V
Іон	IO lines drive current	-8	-10	-12	mA	V _{DD} =5.0V, V _{OH} =4.5V
R _{PH}	Pull-high Resistance		90 170		KΩ	V _{DD} =5.0V V _{DD} =3.3V
Vbrd	Low Voltage Detect Voltage * (Brown-out voltage)	3.0	3.3	3.5	V	

©Copyright 2023, PADAUK Technology Co. Ltd

Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25℃)
M	Bandgap Reference Voltage (before calibration)	1.12	1.20	1.28	v	V _{DD} =5V, 25°C
V _{BG}	Bandgap Reference Voltage * (after calibration)	1.17*	1.20*	1.23*	V	V _{DD} =3.3V ~ 5.5V, -40°C <ta<105°c*< td=""></ta<105°c*<>
		15.52*	16*	16.48*	MHz	25°C, V _{DD} =3.3V~5.5V
fihrc	Frequency of IHRC after calibration *	14*	16*	17.28*		V _{DD} =3V~5.5V, -40ºC <ta<105ºc*< td=""></ta<105ºc*<>
		31.5*	33.8*	35*		V _{DD} =5.0V, Ta=25°C
		29*	33.8*	38.4*		V _{DD} =5.0V, -40°C <ta<85°c*< td=""></ta<85°c*<>
filrc	Frequency of ILRC *	32*	34*	35.5*	KHz	V _{DD} =3.3V, Ta=25°C
		29*	34*	40*		V _{DD} =3.3V, -40°C <ta<85°c*< td=""></ta<85°c*<>
V _{ADC}	Workable ADC operating Voltage	3.3		6.0	V	
Vad	AD Input Voltage	0		Vdd	V	
ADrs	ADC resolution			11	bit	
ADclk	ADC clock period		2		us	3.3V ~ 5.5V
tadconv	ADC conversion time (T _{ADCLK} is the period of the selected AD conversion clock)		14		TADCLK	
AD DNL	ADC Differential NonLinearity		±3*		LSB	
AD INL	ADC Integral NonLinearity		±3*		LSB	
ADos	ADC offset*		3 4		LSB	-40°C <ta<85°c* -40°C <ta<105°c*< td=""></ta<105°c*<></ta<85°c*
t _{INT}	Interrupt pulse width	30			ns	$V_{DD} = 5.0 V$
Vdr	RAM data retention voltage*	1.5			V	In power-down mode.
twpt	Watchdog timeout period		4096			misc[1:0]=01
	(T _{ILRC} is the clock period of ILRC)		16384			misc[1:0]=10
t _{SBP}	System boot-up period from power-on		1024		TILRC	Where T _{ILRC} is the clock period of ILRC

Symbol	Description	Min	Тур	Max	Unit	Conditions (Ta=25℃)
	System wake-up period					
	Fast wake-up by IO toggle from		128		Tsys	Where T _{SYS} is the time
	STOPEXE suspend	120			1313	period of system clock
	Fast wake-up by IO toggle from		128 Tsys			Where T_{SIHRC} is the stable time
	STOPSYS suspend, IHRC is		+			of IHRC from power-on.
twue	the system clock		T _{SIHRC}			
WUP	Fast wake-up by IO toggle from		$128 T_{\text{SYS}}$			Where T_{SILRC} is the stable time
	STOPSYS suspend, ILRC is		+			of ILRC from power-on.
	the system clock		TSILRC			
	Normal wake-up from					Where TILRC is the clock
	STOPEXE or STOPSYS		1024		TILRC	period of ILRC
	suspend					
HCPos	Comparator offset*	-	±10	±20	mV	
HCPcm	Comparator input common mode*	0		V _{DD} -1.5	V	
HCPspt	Comparator response time**		100	500	ns	Both Rising and Falling
HCPmc	Stable time to change		2.5	7.5	us	
	comparator mode		2.0	7.0	uo	


*These parameters are for design reference, not tested for every chip.

** Response time is measured with comparator input at (V_{DD}-1.5)/2 -100mV, and (V_{DD}-1.5)/2+100mV

The characteristic diagrams are the actual measured values. Considering the influence of production drift and other factors, the data in the table are within the safety range of the actual measured values.

4. <u>Reference Application Circuit</u>

5. Package Information: MSOP10 (118mil)

	DIMENSIONS IN MILLIMETERS						
SYMBOLS	MIN	NOM	MAX				
A	-	-	1.10				
A1	0.05		0.15				
A2	0.75	0.86	0.95				
b	0.17	0.20	0.27				
C	0.08	0.15	0.23				
D	2.90	3.00	3.10				
Ε	4.80	4.90	5.00				
E1	2.90	3.00	3.10				
	-	0.50	Ι				
L	0.40	0.53	0.80				
У	У —		0.076				
ð	8	3	8				

NOTE :

- S NO NTERI FAD INTERI FAD FLASH SHALL EXCEED
- PER SIDE. DOES NOT INCLUDE DAMBAR LOWABLE DAMBAR PROTRUSION S INT TOTAL IN EXCESS OF THE S ION ROTRUSION ÂLŌ ATE NL COP DIT OF OT BE LOCATED ON THE LO VER RADIUS OR THE FOOT. N MUM SPACE RETWEEN PROTRUSION FOOT. MANUAU SPACE BEINGEN PROTRUSION AND ADJACENT LEAD TO BE 0.0028⁺[0.07mm] TOLERANCE: ±0.010⁺[0.25mm] UNLESS OTHERWISE SPECIFIED. OTHERWISE DIMENSION FOLLOW ACCEPTABLE SPEC

- SPEC. 7. REFERENCE DOCUMENT : JEDEC SPEC MO-187